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INELASTIC RESPONSE OF PRIMARY REACTOR
CONTAINMENT TO HIGH-ENERGY EXCURSIONS

by

Gabriel Cinelli, Jr., Joseph Gvildys,
and Stanley H. Fistedis

ABSTRACT

The inelastic response of primary containment to
a high-energy axisymmetric excursion is found by numeri-
cal techniques. First, the equation of state for inelastic
behavior is discussed. Then the basic conservation laws of
mass, momentum, and energy are given in Eulerian coordi-
nates. These equationsare thentransformed into Lagrangian
coordinates and the finite-difference equations for numerical
computation. Finally, the results of a sample problem cal-
culation are given.

I. INTRODUCTION

Knowledge of the containment potential of a particular reactor de-
sign is essential in assessing the overall safety of a nuclear power plant
concept. To determine this potential, the containment response to a prompt
critical excursion must be analyzed. During such an excursion, a high-
pressure (200-300 kb) shock wave is developed, which propagates through
the primary containment, causing damage. Therefore, the goal of the
Primary Containment Program at Argonne is to devise theoretical methods
for determining the type and amount of damage done by the shock wave.

One of the questions that must be answered is: How does the mate-
rial strength of the primary containment affect the progress of the shock
wave? If the pressure is 100 kb or more, the approximation of the material
to a fluid is valid, since the material shear strength is a few kilobars. Ex-
periments with metals at 50 kb or below show that the wave-propagation
velocity is greater than that given by hydrodynamic theory. Hence, mate-
rial strength must be accounted for when the shock-wave pressure 1s less
than 50 kb.

As the shock wave progresses through the primary containment, it
strikes the blanket material, the coolant, the pressure vessel, the blast
shield, and the biological shielding, in that order. Since the pressure is so
high, the blanket material can be treated on a hydrodynamic basis, but, due



to the decay of the shock wave in the coolant, the pressure vessel must m.-
clude the effect of material strength Incorporation of material strength in
the equation of motion requires that the equations be written in terms of
the stress components. In this way, the material shear strength is included
automatically.

The purpose of this report is the solution, by finite-difference
methods, of axisymmetric wave propagation in compressible material with
shear strength accounted for. Lagrangian grid representation is used. For
this system, the motion of the medium is described with reference to a
mesh attached to the material. This results in a limitation of the method
when severe distortions of the original mesh take place. The program can
be used with a fluid or elastic-perfectly-plastic solid. The polynomial
equation of state 1s used for describing the hydrostatic component of the
stresses.

The remainder of this report is divided into three parts. Section II
describes the equation of state. Section III treats the equations of motion
and discusses the finite-difference equations. Section IV gives the results
of computer code calculations on a sample problem.

II. EQUATION OF STATE

The first requirement in the calculation of elastic-plastic flow is
to formulate the equation of state. This equation must describe elastic,
elastic-plastic, and hydrodynamic flow, and include appropriate yield crite-
ria in the latter two regimes. The literature contains many complicated
forms of equations of state: some are designed to aid the mathematics in
the analytic solution of equations of motion. However, since numerical
techniques will be considered here, the equations of motion are independ-
ent of any rheological equation of state. and any form may be used. The
objective of the equation of state will be to provide a theoretical description
applicable to a wide class of practical problems. but using simple idealiza-
tions of the outstanding features of the real phenomenon The plastic state
will be described by continuously adjusting the stresses such that the yield
strength is not exceeded

A. Elastic Region

We shall consider media having the same properties in al] directions,
i.e., isotropic media

In x, y, z coordinates, the sta}te of stress in a continuous medium is
defined at a given pom!: by six stress'components: Ox, Oy.. Ozs Tyz, Tzx, and
Txy (Ref. 1, p. 14). It is always possible to choose coordinate axes such that




the shear stress at a given point is zero, i.e., Ty, = T5x =Ty, = 0 (Ref. 2,
P- 215). Any three orthogonal axes yielding the above conditions are called
the principal axes for the point considered. Stresses in the directions of
the principal axis on surfaces normal to these axes are called principal
stresses.

A perfectly elastic material is characterized by a linear relation-
ship between stress and strain. Hooke's law is used to describe the stress
resulting from the strain at this point. The strain results from a force
that displaces particles in the media. Hooke's law, in terms of an incre-
mental stress resulting from an incremental strain, may be written

- 2
0, = X% + 24€;

"

o) )‘V +2u€; (1)

AR R
03 = XV + 2u€;.

Here A and u are the Lame constants; €;, €, and €; are the strain rates
in the directions given by subscripts; and V is the volume. The dot means
a time derivative along the particle path. The time derivative provides an
ordered sequence for the incremental stress-strain relationship, but this
does not mean that a rate-dependent stress-strain relationship has been
introduced. Used in this way, Hooke's law gives natural strain, which
means that the strain of the element refers to the current configuration,
rather than the original one. .

Stress behavior of the material can be thought of as being composed
of a stress associated with a uniform hydrostatic pressure (all three normal
stresses equal), plus a stress associated with resistance of the material to
shear distortion. In describing yielding and plastic flow, we must limit only
the stress contributions due to shear distortion. Therefore, each of the
stresses 0;, 0;, and 03 is broken down into a hydrostatic pressure P and a
strain deviator S;, S;, and Sj:

o, =-P+8, 6,=-P+85,
gy = <P 8y, o= =P A S (2)
Oy = -P+8, & =-P+8,

where -P is the mean of the three stresses; i.e., P = -(0, +0, +o3)/3. The
usual notation is followed: stresses are >0 in tension and <0 in compression.



This is just the opposite for pressure, hence the negative sign.

normal strain is defined as

6 = %(61 te; t€;)

and

6 = T(€ +6&; 1+€5).

The mean

(3)

Similarly, the normal components of the strain deviators are defined as

0,

93

From the equation of continuity,

é1+éz +é3 =%,

it follows that

6, +6, +8, =

and

With these definitions, Eq. 1 can be written as

Z;l(él -%%),

S
S

)

where

l

W=

|
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A+ % K = Bulk modulus.
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(5)

(6)



From Eqgs. 5 and 6, it follows that

S +85,; +85,

0 (7)
and

S, +S;, +85;

0, (8)

which states that the distortion components of the stress do not contribute
to the average pressure.

B. Plastic-flow Region

The yield condition of Von Mises is used to determine the elastic
limit.* When the principal stresses are known, the yield condition can be
written as

(01-0,)0% + (0,- 03)* + (0;- 0, = 2(Y°), (9)
where Y° is the yield strength in simple tension.

The left side of Eq. 9 is proportional to the elastic energy of dis-
tortion per unit volume or the energy that causes the volume change.®
Therefore, Eq. 9 states that plastic flow begins when the elastic distortion
energy reaches a limiting value (Y°) /6;1 and that this energy remains con-
stant during plastic flow. Thus the term "elastic-plastic” means the state
whereby the distortion component of the strained material has been loaded,
following Hooke's law, up to a state where the material can no longer store
elastic energy. Subsequent distortion will produe plastic flow, and plastic
work will be done.

The left side of Eq. 9 also can be interpreted in terms of shear
strength. Moreover, there are several ways of viewing Eq. 9, but the point
here is that at the elastic limit the left side is equal to a constant. We
have chosen to interpret the constant in terms of the yield strength in sim-
ple tension, Y®. If the tension is applied in the 0, direction and the lateral
stresses 0, and 03 are zero, then Eq. 9 gives 0, = ¥ " %he simple tension
term implies two-dimensional flow, since in order for the lateral stresses
to be zero there must be strains in the lateral direction; in fact, the ratio
éz/é;, for this case is Poisson's ratio. Also, Eq. 9 implies that the yield
strength in tension and compression is the same (absence of Bauschinger
effect).

For illustration, in the 0,, 0,, 0; space of Fig. 1, Eq. 9 describes

the surface of a cylinder of radius 4/ 2/3 Y°. The axis of the cylinder is
equally inclined to the 0;, 0z, 03 system of coordinates, as shown in Fig. la.



We use the principal stress deviators such that

S; +S; +S3 = 0 (Eq. 8).
This is the equation of a plane through the origin of the axis of the princi-
pal stresses. Intersection of this plane with the cylinder of Eq. 9 results

in a circle (as shown in Fig. la). It is assumed that if the stress deviators
give a point inside the circle, the material is within the elastic limit.

o,
3 PLANE: 5#5,#5,:0

PLANE ¢ S;+Sp+53 =0
2.40
‘\/—Tv n+l

]
o YIELD CIRCLE

113-1936 (a) (b)

Fig. 1. Von Mises Yield Assumption

When the material is loaded beyond the yield strength and subse-
quently unloaded, the elastic distortion energy is recovered; work against
the material while in the plastic state is not recovered. In other words,
the loading and unloading paths are not the same. (In Fig. 2a, the loading
path is OAB, the unloading path BC.) It has been shown that the work done
on the material during a loading and unloading cycle must be positive or
zero, zero only when pure elastic changes occur. Furthermore, the plastic
strain increment must be normal to the yield surface that separates the
elastic and elastic-plastic states.

We will describe plastic flow by monitoring the stress deviators at
the elastic limit. In Fig. 1b, the stresses are shown at state n and, after
an incremental strain, at state n + 1. However, state n + 1 is outside the
yield surface, and our assumption is that this state cannot be reached.
Instead, we will consider that the material flows plastically but the stresses
remain at the elastic limit on the yield circle. The plastic component of
strain is perpendicular to the yield curve, and it is the stress associated
with this component of strain that we wish to limit. Therefore, the new
stress state is the point reached by a vector from n and perpendicular
to the yield circle. The one-dimensional analogy is shown in Fig. 2a,
where the stress -S, has a maximum value for all strains beyond the
elastic limit point A. Thus, to summar.ize the yield assumption,

(S1- 52 + (5= 8)° + (8- S1)F =2(¥°)" (10)

5, +5; +8; = U; (11)




e COMPRESSION which can be written
' B €30
€4:0 "
8 s} + 53 + 53 =4(v°)".

A
AL AR T i i
ST +55+455+ £ (¥9
SLOPE Sl ;
TENSION If an incremental change

in the stresses in an element re-

(b) sults in a violation of the inequal-
P gl ity, each principal stress deviator
%Y‘; SLOPE """’%F) must be adjusted so that Eq. 11
0 e is again satisfied. Equation 6 is
used to calculate the stress
Zy deviators. If a point falls outside
(o) 5 -0} the yield circle, it is brought
: o | A R e s back to the circle along the radius
3Yl° P SLOPE (A+ 2p1) vectc.?r of the point 'and hgnce per-
2 S = pendicular to the yield circle.
) - This is accomplished by multi-
plying each stress deviator by
113-1937

Fig. 2. One-dimensional Strain for
» VO YNCEEEES

a Perfectly Plastic Material

By adjusting the stresses perpendicular to the yield surface, we affect only
the plastic components of the stresses. The observed incompressibility of
the plastic state is implicit in this procedure. A background pressure state
is always present, whether the material is in an elastic or elastic-plastic
state, but it is independent of plastic flow. This is in agreement with the
observed behavior of ductile metals.

The above formulation applies to a perfestly plastic material, i.e.,
material that flows plastically without work-hardening (see Fig. 2). For a
work-hardening material, the stress (—S,) increases monotonically with
strain (€;) for strains beyond the point A, instead of remaining constant as
for the perfectly plastic material shown. Work hardening can be introduced
into the calculations by making the constant ¥in Eq. 9 a function of the
strain energy. Also, when enough work has been done, the value of Y? can
be set equal to zero. In this way, an all-hydrodynamic description will
follow, since the stress deviators will be set equal to zero automatically
by the above procedure and the remaining stress will be P. Time-
dependent yielding can be represented macroscopically by selecting a high-
yield constant Y° if the strain rates (€;, €, and &;) are above some pre-
scribed value.

In the negative pressure region, the pressure is cut off at
X = --;- Y° consistent with a simple tension test.

11
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The complete equation of state is given by
=
; : Ly
= Thalld R S, = 2u\€1- 35/

e . Ax
(i) o =-P +S; (i) S, = 2M\€2- 35 )

) f (12)

. . 1y
o3 = -P + 853 S3=2,u€3-§\—/

(i) S?+83 +83=2(Y"5 (iv) S, +85, +855 = 0

() e s i T A T (vi) Min P = -+ Y°. J

C. Experimental Equation of State (Hugoniot)

Consider a one-dimensional shock wave traversing a material such
that there is a strain in the X direction and zero strain in the Y and Z
directions. This is the geometry whereby Hugoniot equation-of-state data
are obtained. A shock exists that takes the pressure through an elastic
state to an elastic-plastic state.

For one-dimensional flow, the X, Y, Z coordinates are the princi-
pal directions, so by Eq. 6 the three stress deviators are

» e

: il
SX:2“<€X'§V)’
Ty 1V
o ag 2*‘(" 3V) (13)
. 1V

= 2ulo- 2]}
5z “< 3V) $

The total stress in the X direction is

and

=l SR S, (14)

We will assume that ox is obtained by Hugoniot measurements. For one-
dimensional flow, the equation of continuity gives

. N
€X—V.



The complete equation of state for one-dimensional geometry is described
by

(i) ox = -P +5x; (iv) sx +25y = 0; )
2 d €. VW .
B ZP(V - 3‘{,‘). iv) P = P(V);
(i1) : > (15)
Sv = 2 AV) ; ; = _1vy0
Y M 3V)/) (vi) MinP = -3Y".
iii) S%2 + 28% =2(Y9%);
iy i e A )
Up to the elastic limit (point A in Fig. 3),
et
Pay= -Kv
and
et Ay v
SX = ZH(V- §V>; (16)
or
P=KlnV,
and -
Sx =4$ulnV = -25y,
OX =KInV+3ulnV = (K+ju)ln V.
At point A,
2 2 _ 2 (vy0)2
3 + 25y = 3(Y°),
or
2 2
H(unA) = 3(Y°,
2u(o
Y° = 2ulln val = XA (17)

A +2U

13
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NIOT ELASTIC LIMIT . )
sl Hugoniot Curve for a Material-

n pp°e WV 3
p° REFERENCE DENSITY dependent Yield Strength
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113-1935

This gives the maximum yield strength Y° if the Lame constants

and the Hugoniot elastic limit are known.
For points beyond A,

2
g +280 =4(x%),

which reduces to

= +2Y° (from Eq. 15 iv). (18)

Therefore, the total stress resulting from a shock from ox = 0 to a point

above A is
-ox = P(V) +$Y°,

where P(V) is the Hugoniot, which is expressed as
2 3 Vo
P(V) = An-1) +B(n-1)°+Cn-1); n = 3

Here A, B, and C are constants such that
P(V) +2Y°

reproduces the Hugoniot above point A and
p(V) =KInV

the Hugoniot below the elastic limit A.

Use of an equation of state given in Eq. 15 results in a loading
path OAB and an unloading path BCD, as shown in Fig. 4. Experiments
on metals in the low-pressure range (0-50 kb) have demonstrated the
difference between the P(V) and Hugoniot (0x) curves at high pressure
(hundreds of kilobars). For some metals, the sound speed behind the
shock has been measured to be 20% faster than that predicted by hydro-
dynamic theory. This gives reason to extend the low-pressure model up
to high pressures. From a high pressure, the material unloads first
elastically along BC, the slope of the path is characteristic of the elastic
unloading velocity. Consequently, the rarefaction wave travels faster than
it would if the material unloaded entirely along the P(V) path.



HUGONIOT ELASTIC Fig. 4

LIMIT
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113-1935

III. BASIC EQUATIONS

This section describes the basic conservation laws, the equation of
state, the transformation from Eulerian to Lagrangian coordinates, and the
finite-difference formulation of the Lagrangian coordinates.

A. Conservation Laws of Mass, Momentum, and Energy, and the
Equation of State

. Mase
a. Incremental form
pd¥ = o aw’, (19)
where
p, d¥ = density and incremental volume change, respectively,
at time £ > 0,
and
p°% d¥°® = density and undeformed increm;ntal volume, respectively,
at time t = 0.
b. Differential form
%‘3+%‘3+%=%=1‘;, (20)
where
u, w = radial and axial velocity, respectively,
and

o, v = density and specific volume, respectively.

15



and

where

and

and

2. Momentum

. . 3P - Trr) 99y 3 20rr + 02z (21)
Ps PU = s or 5 oz r ¢
. > (P -70,,) ac’rz + _OLE (22)
pZ = pW = - _T + ar r ’
23
P = -Yorr + 0gg t 0z2): (251
@ = e ache Ly SZZ SRoSCEEIE, (24)
699 = dgguib s ~(Orr *022)s Opz = Opge (25)
P = hydrostatic pressure,
u, w = radial and axial accelerations, respectively,
r, z = radial and axial displacements, respectively,
Orr,0zz = radial and axial stresses, respectively,
Ogg» Oy, = tangential and shear stresses, respectively,
Orrs» Oz = radial and axial deviatoric stresses, respectively.
3. Energy
E = -Pv + v(arrérr + Opggéeg + szzézz + Orzérz)’ (26)
5 du- . ow . du  dw
€ = o= = = —_— _
Rt e e @)
. P BT C
€gp =7 = v (Errt+ézz) (28)



 § 4

where

E

internal energy per unit mass,
€rr» €z = radial and axial strains, respectively,

and
€gp’ €r, = tangential and shear strain, respectively.

4. Equation of State

Since no known equation of state prevails for all materials, the
form assumed is the Mie-Griineisen equation of state:

P = Py +X(E-Ep), 29)
where

Py =A(n-1)+B(n-l)2+C(n-l)3n =p—pt; = ‘%, (30)
and

R L (31)
where

P = the Hugoniot curve known from experimental data,
¥ = Grineisen's constant, ’

and

A, B, C = constants.

B. Transformation of Conservation Laws into Lagrangian Coordinates

In the foregoing equations, all dependent variables are functions of
the Eulerian coordinates (r,z). For numerical computation, it is desirable
to transfer from Eulerian coordinates to Lagrangian coordinates (I,J) for
two reasons:

1. In Lagrangian coordinates, the same particle is followed for all
time steps; hence conservation of mass is satisfied automatically.

2. In multiregion problems involving contact surfaces, such sur-
faces can be identified easily, thereby permitting the correct equation of
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state to be used. This is not true in Eulerian coordinates. For example,

for an arbitrary function F(r, z), the total derivative is

LBE OF 32
dF = <—dr +3= da. (32)

If the Eulerian coordinates are written in terms of Lagrangian coordinates,

gt (TR s 2 =0 a (1T, (33)
then
F _ OF 3r , OF dz
9 "3 a1 '3 Al (34)
and
BF _ 3F 3r , OF 3
37 T dr &7 +az aa (35)
Solving Eqs. 34 and 35 for aa—f and g—f results in
OF 9z
oI oI
OF Jz o(F, z)
OF _ |37 a7l _ o(1, 1)
ST r dz| o(r, z) (36)
oI oI 3(1,7)
or dz
dJ aJ
and
3 oF
oI dI
5 Q a_F o(r, F) B(F,r)
OF lasarl_o@LJy) 3J)
aZ Q‘a-z - a(r,z) =-a‘r Z! v (37)
ol oI oL.J)  3(1,7)
ar 3
dJ dJ




The denominator turns out to be the area of a zone; hence we define A as

_ O(r, z)

AR L) (38)
so that Eqs. 36 and 37 become

E _ 1 a(F,z!

or A 9d(1,J)
and (39)

o _1aEx)

oz & 2.TF

Equations 39 represent the general transformation laws from Eulerian to
Lagrangian coordinates, and A is the area of the element undergoing
transformation.

C. Conservation Laws in Lagrangian Coordinates

1. Mass

For numerical computation, the incremental form Eq. 19 is the
best. When the volumes are expressed in terms of Eulerian coordinates,
Eq. 19 becomes

. p° _ emrA _ rA _ v (40)
V - p T 2mrPAd T TPAY T vy’ .

where
v, po. r% A° = variables at time t = 0

and A is given by Eq. 20. Equations 27 and 28 can be used to obtain another
differential form of the mass equation. In this case, Eq. 20 becomes

\

% =7 = (Err+égp+és,)- (41)
2. Momentum
On dividing Eqs. 21 and 22 by p, we obtain
fF=u-= l[_ P - Brr) 3 a"-’r:r.] + 20rz +0zz (42)
p ar az pr

19
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and
1[ %_P__WL_ (43)
== oz or pr
Using Eq. 40, Eqs. 42 and 43 become
o rA O(P - Grr) | O0rg (20, ¢ + 0y, )A (44)
ST Yo R Lalo) o o) TR SIS L A o S e
e T [ or oz M°
and
A e e (PG, ) oo } Or A
= = —=| = + il | rz 45
L Mo,: oz or M° (45)
where
VIO p°r°A°‘ (46)

The momentum equations are transformed into Lagrangian coordinates
using Eq. 39, which gives

R b el a(P'arr:Z) a(Urz:l'):l (Zarr +Ezz)A

e M°[ F BT I MO : e
and

e e d(P-BZZ,r) ooy, 2) o._A
Freih: M°[ Y a(Ir,zJ) M “a
3. Energy

Using Eq. 39, Eqs. 26-28 become
E. = 'PV +V(6’rrérr +5zzézz + 666é99+0rz€rz)' (49)
s ooloms) oo 1 Bwe)
Err A B(I,J) v Egz = 'K B(I,J) ) (50)
< alo(w, 2) . Bluix) . & e ;
ol X[a([,l) 7 ﬁ , and 699 = %- (err +€zz)- (51)
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4. Equation of State

The large P in the energy equation is set equal to the hydro-
static pressure plus an artificial viscosity term, or

P =p+aq, (52)

where

q = ‘ (53)
0, v>0

For the pressure p, a Mie-Grineisen equation of state is used
P = py +2 (E-Eg) (54)
v H

and

PH = An-1)+B@n-12+Cn- 1)3'. n=£, (55)

where pp is the Hugoniot equation of state and Y is Griineisen's constant.
Epy is determined from the third Rankine-Hugoniot condition,

EH - Eq = 3(Pyg +Po)(vo- V). (56)
Since Ey >> E, and Py >> po, Eq. 56 reduces to

n-1
npy

Eyg = ; Py

For the stresses, Hooke's law holds up to the Hugoniot elastic limit and
Von Mises yield criterion holds after that.

a. Hooke's Law

)+ b (57)

<<

g 1
B - Z“("Err L

<<

. 1
zz - Z/“(e zz = 3 )+ 622 (58)

- 1v
e = 24(¢0 - 37): i
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and

where

and

and

where

i = shear modulus,

correction for rotation during time step in computation,

5 =
8rr = -0,
G = OZZ—;o}_’l(cos 20-1) + 0,., sin 20,
azz < arr A
Ozl = O (cosF20=1)"~ 3 sin 2W,
A
M2/ du dw

i =45—(82 - &)
Using Eq. 39, Eq. 64 becomes

L Atm+%[a(u,r) a(w,z)]
e Y Tar

b. Principal Stresses

Orr * 0zz B

By = > 5 %[(azz‘ arr)z + (Zcrz)z] )

Orr 1 0z, £ S 1
S = T2 - 4 [z - el + (20,0,

5; = 699,

599 is a principal stress.

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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c. Von Mises Yield Condition

- - - 2
2) = St + 8} +5% =03, +0,,+ 05+ 207, = (%", (69)

where Y° is the yield strength of the material.
In tension, the hydrostatic pressure can take a minimum of

P = -%Yo. (70)

R
E A H I
2 | .
8 0 ) Zone Identification
for Finite-difference
3 4 Equations
J
¥ C G
z

The correspondence between the letters and numbers in the illustra-
tion, with Lagrangian coordinates is

L=t ¢+ T +& > 0i="F 3 y S i W O |

Staradk T ok A =Tl d B EIs] Jed

W AR ) O S R | G=1-1,1+1

AT d T+t CEl-ld cH=TEI Tl
D=1 ]

For converting the differential equations in Lagrangian coordinates
into finite-difference form, the following equations are needed:

aa(é‘:;)) = %[(Fz- F4)(rA' rctrp- rB) - (Fy- Fl)(rA'  Lolu % 5 ; Yo rD)]; (71)
aa(g";) = 3[(F,- Fy)(za - z¢ + zD-2B) - (Fy- F3)(za-zc+zB-2zp)l.  (72)

In the equations that follow, the subscripts refer to the zone identifi-
cation, and the superscripts to the time of occurrence.



1 1
o . & . il - m->
At a given time t™, all the quantities am-1l gm-i yh=z iz

; m gm gm
rM, and zM at point 0, and EM, A™M, pMm, gMm, p™m, v, 0¥y, 9550 92z

m em m M (M-3 and AM atpoints 1,

Tz» OFr: Oggr Ozp S{n' S§n: 537 €rrr €220 Crae

i Rlian G O
2, 3, and 4 are known from the initial data for m = 0 and from the com-

putation of the previous cycle for m > 1.

At the beginning of a new cycle. tmtl g computed from
1
tm+1 = ¢m +Atm+5, (73)

1
where At™7T2 is the time step determined from stability considerations.
The White stability number for each zone is calculated from

1,2 ‘"
w 2| 1 +3pmym AEEEY Av™-2
e = 0,m t4 m 2 (74)
1.2/ 12,34 pPA 1,2,3,4\ 1.2 fud 1.2,3,8

where the subscripts are permuted in sequential order. The time interval
1
At™MT2 ) to be used for the next cycle, is chosen so that the maximum of the

stability numbers with

1 i
AtTPYZ S ppm-2 (75)
satisfies
2
w
0.0355(ﬁ) =0.14, (76)
or
0.225< wpmax < 0.45. (77)

" T
Once AtM12 g found, the At™ is determined from

1 " 8
At T2 4 A2

2 (78)

A B

Next, the accelerations U™ and wM are calculated. For this pur-
pose, Egs. 47 and 48 are used. From Eq. 46,

oy Sy a8ig
(M) = (p°r°A°), . (79)
Equation 79 is approximated by assuming that

M), = $(m? +MJ +MJ +MJ), (80)
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0 e 0 0 81
Miz3,4 = P1,2,3,4T1,2,3,4 Al 2340 (81)

0 = if-0 0 o o 82
T1,2,3,4 4(r°,0,0.0+rD,A,B,C+rH,E,F,G+rA,B,C,D)' (82)

and

Alrsn = 3 [(roA.E,B,D_ r5,0,c,G) (*1,4,0,0” %0,8,F,C)

'(’E,A,O,D 2 r(o),B,F,C) (Z.OA.E,B,D 3 ’B,o,c,c)] : (a3)

The accelerations are




<(201:; +5:1Z)Am> 1 <(201:; +B;n) Am> i <<25n; +5;On ) Am>
M° 0 & M’ A s ¥
REENE E
M 3 » .

I, I m I
A A o;’Z‘Am oA oA
Bep | L fre . b —| +\ == |. (87)
& T4 M° 1 Mo 2 M 3 M 4

and

)

m m /Zm R zm
z [(rA,E,B,D'rD,o,c,G)\ H,A,0,D” “0,B,F,C/

5 (r}r?,A,O,D . rg?B,F,C) (Zr,E,B,D Y zg,o,c,c)] , (88)

In Eqs. 84 and 85, there is the following complication: If rg" is
taken for r = 0, then U and z are zero, which is physically incorrect. Thus
the term r{,n/(Mo)o in both equations must be modified in the following man-
ner. Since the mass of each volume is constant with time in Lagrangian

coordinates,

MO - pOrOAO = pmrmAm (89)
and

T T 5 1

M pMrmAm ¥ pmAm (90)
Thus,

m
b CIE R (91)
(M%), (pmam)

(e™A™), = 3[(6™AM™), + (PMAT™), + (FMAM) 4 (PMAT™)], (92)



and
0
m = Mj2,3,4 (93)
pl:z:3y4 <ud m Am »
T1,2,3,421,2,3,4

Therefore, the final form for the accelerations is

57 = sy, ({5702 o ¢ D)

(94)

and

wo = m ({[(PT -p") - (5':12-524)] (R -C+ B rB)
= [(an - P;n) - (Bx;;l -B’Z’z;)] (rrAn - rr(? o ran - rg‘)}
e e B-o8)

-(CJl;.nzl - 01:;3) (ern - zrg ;i 3 ern - zg‘)]}>

+(‘M> : (95)
0
M 0

27
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The other equations remain the same. New velocities are calculated from

m-% m.m

" 96
u;n+2 = up + At vy (96)
and
1 =1 .
W;n+2 = w(I,n A +Atmwgn, (97)

where At™ is given by Eq. 78.

Next, the new positions are calculated from

+3 m+3
e et R (98)
and
1 1
+3 m+3
L B ity (99)
and the new areas from
m+1 ] Mt m+1 )( m+l K Zm+1 )
Arase =5 [(rA,E,B,D " ™p,0,c,G/\VH,A,0,0" %0,B,F,C
m+l1 rmﬂ ) (Zm+1 zm+1 ) (100)
i (rH,A,O,D 0.B,F,C/\"A,E,B,D” “D,0,C,G ]
In the rest of the equations, a number of quantities will be needed at
41
t7"2, These are obtained by substituting
1 m+1 m
+1
Fotz _ i Rl (101)
2
for
=z, ALV Orrs 0ggs O, ps i (102)
Specific volume and specific volume rate are calculated from
m m m+1 m+l1
m T1,23,4A1234 m+ 2 Al,2,3,4
V12,34 = (M) P Vigye @ ol LRSS, (103)

0
1,2,3,4 M )1,2,3,4



and
m+1 m m+1 m
.m+3 Y1234 Y1234 m+3 Tiaaas T Vias.e
Vl,z,az,4 ¥ e, "1,2,32,4 T o, (104)
atmte
Strain rates are calculated from Eqs. 50 and 51 to give
e )m+— 3 1 [( m+3 m+z )( m+5 zm-l»% )
TRy 23 2m+§ "A.E,B,D "D,0,c,G/ \*H,A,0,0” %0,B,F,C
Al,2,34
( m+2 um+i )( m+~ m+z ) (105)
“H,a,0,0" %,B,F,c/ \?a,E,B,D” ?D,0,C,G/J’
@ )m+% _ 1 [( m+ty m+— )( m+3 m+% )
z22'1,2,3,4 m+: [\WA,E,B,D ¥D,0,c,G/\"H,A,0,0 %0,B,F,C
2A) 2 34
m+y m+2 )(m+— m+z \:I 106
'(“’H,A,o,n %o,8,r,c/ \*A,F,B,0" "D,0,c,c/| (1°¢)
1
. mt: \',)m+i . \m+3 . m+3
(696)1,2,3,4 = (V - (E”),'z,," L3 (622)1’2,3,‘ ) (107)
1,2,3,4
and »
e ] m+z m+-— )( m+— m+z )
(Erz)l,m,,“ R AEBO ¥D,0,c,G/\*H,A,0,0™ “0,B,F,C
A2, 3 4

( m+s WOt ) ( m+i Mt )]
= WH,a,0,0" Yo,B,F,c/ \*A,E,B,D” ?D,0,C,G
( m+3 m+— )( m+3 rm+% )
“a.E,B,D “0,B,F,c/\"H,A,0,D" "0,B,F,C

( m+— m+—§' ) ( m+— m+— )]} (108)
HAOD O,B,F,C A,E,B,D" DOCG
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1
Total strains are calculated by multiplying Eqs. 105-108 by atmtz,

giving
(Aerr):r:,ri} = ('rr):':f" Atm*’%_ (109)
Beza)y 2, = ZZ)TjA s, (110)
o™ = &, A, (111)
1,2,3,4 1,2,3,4
and

m+% o m+% m+"1,j
Begg), , 5, = €o0) , 7 A% (112)

The elastic deviator stresses are calculated next:

m+3 . m+ti m+1 m
o “
N e T A R O m+3 o
L & T
- +1 — m el m+3
Grr)™” ( +at7 2 5 ;
1,2,3¢ rr)1,2,3,4 (orr)l,z,3,4
=TT m+3 1 (Av\m+3
= (Gpp) +2,u[(A€ ™ 32 2]+5 : 114
gy EE o 3(" 1,2,3,4 22 ok
= +1 2 1. =
~ m L m +Atm+2(5 )m+2
1,234 AR BEL] 28
G )m [ m+s 1/Av m+3
= + 21| (b€ 2 -—(— + 115
sl g ( zz)x,z,3,4 3NV a3 82z’ S
= +1 ~ mtl/2 \mtz
(o)™ = (Ggo™  +at™*7(5,)
1,2,3,4 991,2,3,4 66 1,2,3,4
o T m+i 1/(Av m+z
= (0gg) t2u|(begg) "% - 5(7 . (116)
1)2,5 4 128k & 1,2,3,4



+H m m+3 m+3
I (o +At 2
P2, rz)x,z,3,4 ©re 152,54
1
+5 1 (Av\m+tz
= +zp|:A€ o o2 -—(—) ]+é a 117
x'2)1,2,3,4 (%€r2) et 3MV Ay o0 e (117)
=T 0.0, 118
rr)l,2,3,4 ( zz)l 2,3,4 e

},2,3,4

(Oes) . - Bre)S
(ézz)l;nz L { o 1'2'3"2 ( rr)l,z,z.{l [(cos Zd)m+; - l]

+ (Orz)Tz,s,4 (sin Zu)):‘:’i‘, (119)
(6”):;,3,4 = (orz):‘z“ [(cos Za))?::i‘ - 1]
A [(azz):]z,m ; (6"):2'3"] (sin 2097 :54 (120)
(sin o)™t - Atm+% { <“m+% Mt )( m+} _ m+} )
S in:f" AE,B,D "D,0,c,a/\"H,A,0,D” "0,B,F,C

( mt3 m+2 ) ( m+3 m+2 )

S A 0D 0,B.F.C/\VAES.D -D0,CG
( m+y m+— )(zm+’;- m+— )
A,E,B,D ¥D,0,c,G/ \’H,A,0,D” “0,B,F,C

_( m+y m+— )(m+z m+— ) _ (121)
HAOD OBFC A.E,B,D DOCG

The principal stresses are given by

31



= m+1 — \m+1
g, { ”)1,2,3,4 Caa), 550
iy 2 3,475 2
L
2 11 .20
gk Pl gt g EUEETE e , (122)
2 R b i T271,2,3,4
o )m+l fe )m+1
G = Orhaa Ol
2i ot d: T >
z3
1 [[= m+ -~ mh |? m+ ]%]° (123)
T2 {[(022)1,2,3,4 E (0”)1,2,3&} ! [(Zorz)l,z,m !
and
mt+  _ = mtl ida
(53)1,2,3,4 - (099)1,2,3,4' ( )
The Von Mises Yield Condition is given by
12 2 2
m+1 m+tl1 m+1 m+1 L
SHA A R R I [ (125)
then,
ks m+1 2 (,0\2
TR [ P 3(Y0) (126)
+
If K" < 0, the deviator stresses are used unchanged in calcula-
- -m+1 —m+l —-m+ -
tion. If K™ > 0, the terms 01:; l, o™ l, Og‘e ', and O:nz 'are multiplied by

zz

fov

b3
ZJml

5 (127)

and the new values are used.

The next quantities--pressure and internal energy--are determined
by solving the equation of state and the energy equation simultaneously
from

pukl m+1
Pieae = Prasetd1,2,3,4: (128)
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m+1 Y m+1
P54 = PRt —0o (E1,2,3,4' EH) (129)
Vi 234
2 0 m+l 3
(1.2) pr 23,480,234 [ medt |2
: 2
s 4) Av< 0
qm+1 & b \2 Al s (130)
418434 v1,2,3,4)
0 Av > 0J
and
m+1 m
gibis - m Piz3sa *Pi2se rmt m
s = Eny 254 ~ — 2 (Vx,z,3,4“’1,z,3,4)
m+¥ = = = . m+tz
+v,; 24 (Orrberr +0z,0€22 + Ogglegy +OI‘ZA€I‘Z)1’2'3,4 5 (131)
The total stresses computed from
m +1 - m+1 m+1 R
o = (o - -
( ")1,2.3,4 ( ’r)n,z,3,4 132,304 ¢
m+1 - m+1 m+l
(ozz),'z’;,,‘ B zz)l,z,3,4 L PTE EE 4 (132)
M e amR) m+l
(099)1,2,3,4 A (099)1,2,3,4 1A 4

The final calculation is the energy of the region of a check on the
accuracy of the calculations. The internal energy added by zones is

+
aE)™*™ = 21 Z E ;™) (133)
L7

and the kinetic energy is

2 2
KE)™* - % [(“?J“) i (W;nJH)] (Mg+Mg+Mg+Mg)' (134)
5 S ’

This completes one cycle of calculation.



IV. SAMPLE PROBLEM

A. Reactor Configuration

Consider a typical LMFBR core of stainless steel-clad, oxide fuel

pins supported in stainless ste

el grid plates and cooled by liquid sodium.

As shown in Fig. 5, the core is surrounded by a radial blanket, an upper
blanket and plenum, and a lower blanket, all immersed in the sodium
coolant. The sodium is blanketed with argon gas and is contained in a steel
vessel. This vesselis installed within a concrete cavity that has a rotating
shield plug at the top. Also shown are the pertinent dimensions and

Lagrangian meshes.

Z PLATFORM
TOTAL
48 ZONES PLUG
‘o (2350) s (49,50)
Hy o ARGON
a7
G AT 7.5
48 Cm
SODIUM
s cm
.25 ¢cm 39
G ATE825
Ha PLENUM
L ik
3 AT 8.25= = — } ¥ ! } m
18.75 cm [T JAXIAL BLAN‘KET §
e o z
0
28+ =4 TOTAL
] 2 o
£P 26 CORE B 2 1+HtH 4 o
aAT e 280 ] 18 [ o R
28 cm I g
22 —_— o
o rsem [~ AXIAL BLANKET
19
TAT 8.25:
43.78cm
SODIUM
s cm
BAT7.8 s
228¢cm
8
BAT 7.5
zzacm STEEL
5 i
3AT7 5. LIl
22.5 cm [ ARGON
~isocm 22 = Srbinilo o

113-1942

22 25 | 42 45 (49,2)
F¥ ’,i"”"'”c!",,‘,,,, i l:uu-uumu“ ISAT 7.8« 97.8¢Ccm TAT 7.8+ 82.8cm

oocm

ssocm

Fig. 5. Lagrangian Grid for Sample Problem
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B. Excursion Model

It is assumed that, at the start of the power excursion, the core is
molten and the sodium has been vaporized and expelled from the core re-
gion, but the blankets are still intact. During the excursion, the energy
release is so rapid that the molten oxide fuels are vaporized and super-
heated to a high temperature and pressure. At the end of the excursion,
the core consists of high-pressure oxide vapor, surrounded by the blankets
and liquid sodium in their preexcursion state.

The equation of state for the core oxide is assumed to have the
form

C
P=B exp (-m), (135)

where p is the pressure, E is the internal energy, and B, C, and D are
constants. The equations of state for the blankets, plenum, steel, and
sodium are the Mie Gruneisen type,

K Y
P = Py +— (E-Ep), (136)

where Py and Ey are the pressure and internal energy, respectively,
along the Hugoniot curve, ¥ is the Grineisen coefficient, and v is the
specific volume. The equation of state for argon is

. m-DE

v . »
where n is the isentropic coefficient. Values of B, C, D,y, n, V, and Py
are read into the program inputs.

C. Results

Figure 6 shows the initial layout and time sequence of the Lagrangian
grids. Pressure profiles along R(I) = 2 and Z(J) = 26 are shown in Figs. 7
and 8, respectively.

The computation was terminated at t = 808 psec, when the force
acting on the plug exceeded the strength of the plug holddown device. The
total computer time is about 60 min.
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Fig. 6.
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3
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Deformation of Lagrangian Grids at Various Times after Start

of a Power Excursion in a "Pancake" Core Configuration
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APPENDIX A

Computer Program

1. Input Information Required

s, which are required as input information

following card type
o e g hich they must appear in the

to the program, are listed in the order in w
data deck.

FORTRAN

Card =
Type Columns Format Name Description

(18A4) TITLE Title card: 71 characters of
alpha-numerics for problem
identification. Column 1 must
be blank.

1 1-72

2 (516,3F12.0)

1-6 IMAX Number of zones in the radial
(R) direction.

7-12 JIMAX Number of zones in the axial
(z) direction.

13218 KB1 Boundary-condition indicator
for the top surface (upper Z).
KBl = 0: Fixed surface
KBl = 1: Free surface

19-24 KB2 Boundary-condition indicator
for the cylindrical surface.
KB2 = 0: Fixed surface
KB2 = 1: Free surface

25-30 KB3 Boundary-condition indicator
for the bottom surface
(lower Z).
KB3 = 0: Fixed surface
KB3 =1: Free surface

31-42 TIME Initial problem starting time,
in seconds.

43-54 DELT Initial time interval, in
seconds.

55-66 DELEM Maximum time interval, in
seconds.




Card FORTRAN
Type Columns Format Name
3 (5F12.0)
1-12 CYCLM
13-24 TMAX
25-36 DISTM
37-48 DE1
49-60 DE2
+ (1216)
1-6 IOUA

Description

Stop cycle. Allows the prob-
lem to be terminated after
stop cycle. (If CYCLM =
blank, the program sets
CYCLM = 10000.)

0 or

Maximum time, in seconds.
Allows the problem to be ter-
minated after TMAX seconds.
(If TMAX = 0 or blank, the
program sets TMAX = 10000.)

Maximum distortion index.
Allows the problem to be ter-
minated if the distortion index,
on any zone in the problem, ex-
ceeds DISTM. (If DISTM = 0
or blank, the program sets
DISTM = 10000.)

Instability warning indicator.

If the percentage change in the
total energy is greater than
DEIl, the program ignores
IOUA instruction on card of
type 4, and prints full-accuracy
output every cycle. (If DEl =0
or blank, the program sets

DEl = 0.001.)

Instability control parameter.
Allows the problem to be ter-
minated if the percentage
change in the total energy from
the initial total energy exceeds
DE2. (If DE2 = 0 or blank, the
program sets DE2 = 0.005.)

Parameter to determine the
full-accuracy printout.

IOUA > 0: Full-accuracy out-
put every IOUA cycle.

IOUA = 0: No printout.

41
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Card
Type Columns

4 7-12
(Contd.)

13-18

19-24

25-30

Format

FORTRAN
Name

INUMBA

I0UB

10UC

I0UT

Description
o = e e

Maximum number of full-
accuracy printouts. After the
number of full-accuracy print-
outs exceeds INUMBA, the pro-
gram prints the full-accuracy
printout for the last cycle only.

Parameter to determine the
limited 2-dimensional (2-D)
printout.

IOUB > 0: Limited 2-D output
every IOUB cycle.

IOUB = 0: No printout.

Parameter to determine film
output. (IBM 2280 Film Re-
corder Picture Display.)
IOUC > 0: Film output every
I0OUC cycle.

I0UC = 0: No film output.

Parameter to determine re-
start capability--usage of
auxiliary tapes 8 and 9.

IOUT = 0: Tapes 8 and 9 are
not used.

IOUT = 1: After the computa-
tion is terminated, the program
writes the output data on a bi-
nary tape 8, so that the prob-
lem may be continued later.
IOUT = 2: Continuation of the
problem from a previous run.
Program reads the input data
from a binary tape 9.

IOUT = 3: Program combines
both.

IOUT =1 and IOUT = 2 capa-
bilities: Program reads the
input data from a binary tape 9
and also writes the output data
on a binary tape 8 for later
continuation.

Note: For IOUT = 2 and 3, the input to the program is on tape 9; thus
cards of type 5 to 19 are omitted and only cards of type 1, 2, 3, 4, 20,
21, 22, 23, and 24 are required.



Card FORTRAN
Type Columns Format Name Description
5 (8F9.0) Initial grid dimensions--radial
direction.
1-9 R(2,2)
10-18 R(3,2) Rizi1=2,3,...; 10
19-27 R(4,2)
Use as many cards of type 5 as required; n = IMAX + 2.

6 (8F9.0) Initial grid dimensions--axial

direction.
1-9 Z(2,2)
10-18 Z{2,3) Z,3:53 =2,3, .ecym.
19-27 Z(2,4)
Use as many cards of type 6 as required; n = TMAX + 2.

7 1-6 (16) NSEC Number of rectangular sec-
tions into which the grid is
subdivided.

8 (716,2F9.0) Section cards.

1-6 KR1 Starting zone number in the
radial direction.
7-12 KR2 Final zone number in the radial
direction.
13-18 KZ1, Starting zone number in the
axial direction.
19-24 KZ2) Final zone number in the axial
direction.
25-30 KTl Material indicator.
KTl =1 (core) 9
2 (sodium)
3 (steel)
4 (a'$°“) As used in
5 (axial f the sample
blanket)
problem.
6 (radial
blanket)
7 (plenum)
8 (water) J
31-36 KT2) Material phase indicator.

KT2) =1 (solids o
2 (vapor).

r liquids)

43



44
Card FORTRAN
Type Columns Format Name
8 37-42 KTM)
(Contd.)
43-51 RDD
52-60 ZDD
2) 1-6 (16) NMAT
10 (6F9.0,13)
1-9 AAp
10-18 BBk
19-27 CC)
28-36 CRHOj
37-45 CE,
46-54 CP,
55-57 KKKy
11 (6F9.0)
et CWN, .
10-18 CWB)

Description

Parameter describing the types
ofinputused for zone properties

(p,E,P).

KTM) = 1: Input for all zones
in this section is on cards of
type 10.

KTMyk = 0: Input for each zone

in this section is on cards of
type 14.

Initial radial velocity, in
cm/sec.

Initial axial velocity, in
cm/sec.

Number of different materials.
NMAT must be equal or greater
than any KTl on cards of

type 8.

Constants for equation of
a | state (gaseous materials):
Core P = a exp[-b/(E+C)].

Argon P = aEp. Used only
c [ when KT2y = 2 for the same
material.

Initial density p,, in g/cm?.
Initial energy E;, in dyne-cm/g.
Initial pressure Py, in
dynes/cm?.

Number of PPy and VVj values
on cards of type 12. PP and
VV] represent Hugoniot curve for
the material. If KKK =<0,
cards of type 12 are not used.

1 Constants for stability
criterion (see Eq. 74).



Description

The maximum allowable strain
for the material. The problem
will be terminated when the
strain in any zone exceeds
CPLGgk. If CPLGk =0, the
calculation of strains and
stresses for the material is
omitted.

Material yield strength in
dynes/cm?.

Material Poisson's ratio.

Hugoniot curve points. Used
only when KKK > 0.

1 Py are the pressure
(PH)l values in kilobars on
Hugoniot curve for the
(V/Vo)l specified material k.

T(V/Vo)l are the ratios
of the specific vol-

(PH)Z
umes for the (pH)I

Card FORTRAN
Type Columns Format Name
11 19-27 CPLGy
(Contd.)
28-36 CYOg
37-45 CNU
Note: CYOk and CNUy are used only when CPLGy > 0.
12 (8F9.0)
1-9 PPk,
10-18 VVk
19-27 PPk,
28-36 VVik,.

(V/ Vo), | values. 1=1, 2, ...,
s J KKKg.

Use as many cards of type 12 as required: 0 < KKK = 50.
Note: The Hugoniot curves on cards are in increasing order of V/V,.

13 (8F9.0)
1-9 PO,
10-18 ROK
19-27 EOy
28-36 GOk
37-45 COk

Constants for materials that
are using the Hugoniot table.
Used only when KKKk > 0.

Initial pressure at which the
Hugoniot curve is calculated,
in dynes/cm?.

Initial density for the Hugoniot

curve, in g/cm’.

Initial specific energy for the
Hugoniot curve, in dyne-cm/g.

¥:: Mie-Gruneisen coefficient.

Y.: Additional Mie-Gruneisen
coefficient; used when material
is steel for Py > 131 kb, or
water for Py > 136 kb.

45
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@ard FORTRAN
Type Columns Format Name
14 (213,7F9.0,213)
1-3 Iy 5
4-6 JJ1,7
7-15 REIT 1
16-24 ZCII,J
25-33 RDOTy 7
34-42 ZDOTy 5
43-51 RHOp 7
52-60 Er g
61-69 Py
70-72 KTXLJ
73-75 KTYp 5
5 (516,F12.0,
216,F12.0)
1-6 KPP

Description

Card input for individual zones.
Used only when KTMy = 0 on
card of type 8.

Zone number in the radial
direction.

Zone number in the axial
direction.

Radial dimension, in cm.*
Axial dimension, in cm.*
Radial velocity, in cm/sec.*
Axial velocity, in cm/sec.*
Density, 1n g/cms.

Specific energy, in dyne-cm/g.
Pressure in dynes/cmz,
Material indicator; same iden-

tification as KT1y on card of
type 8.

Material phase indicator; same
identification as KT2) on card
of type 8.

Parameters to describe the
plug and platform calculations
(upper surface).

Parameter that determines
whether platform motion is to
be calculated.

KPP = 1: Platform motion is
calculated according to MZ +
CZ + KZ = F(t), where M is
the total mass of the platform,

* A oo
These values are the displacements and velocities at the lower left corner of the individual zone.

Note: When KTM;, = 0 on card of type 8, cards of type 14 must be entered in the following order for each
section: First, cards having J = KZ1y arranged in the increasing order of I, i.e., from 1 = KRy to 1 = KR2}.
Next, groups of cards having J = KZI1y +1, KZ1y +2, etc,, until ] = KZ2). In each group, cards are again
arranged in increasing order of I, i.e., from I = KRl to I = KR2y. KR1y, KR2k. KZlk. and KZ.Zk are de-

fined on cards of type 8.



Card FORTRAN
Type Columns Format Name
5 1-6 .4 5 24
(Contd.) (Contd.)
7-12 KPP1
13-18 KPP2
19-24 KPPX
25-30 KPPC
31-42 PMASS

Note: KPPL) KPP2, KPPX, and KPPC

43-48

KPL1

KPL2

PLUG

47

Description

KZ is the spring force, CZ is
the damping force, and F(t) is
the total force applied by the
system on the platform.

KPP = 0: No platform
calculations.

Radial zone number where the
platform starts.

Radial zone number where the
platform ends (KPP2 = KPP1).

Number of CX; and CXDj val-
ues on cards of type 16, where
the spring force KZj versus Z
is tabulated. If KPPX < 0, KZ
is set to zero.

Number of CVy and CVDy val-

ues on cards of type 17, where
the damping force CZI versus
Zpis tabulated. If KPPC = 0,

CZ is set to zero.

Total mass of platform, in
grams.

ar® used only when KPP = 1.

Parameter to determine plug
calculations. If KPL1 > 0, the
total force applied by the sys-
tem on the plug is calculated.
KPL1 indicates the number of
the first radial zone of the

plug.
Number of the last radial zone
of the plug (KPL2 = KPL1).

Allowable plug force, in dynes.
Problems will be terminated
when the force acting on the
plug exceeds PLUG.

Note: KPLZ and PLUG are used only when KPL1 > 1.
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Card FORTRAN .
Type Columns Format Name Description
16 (8F9.0) KZj versus Z1 table. Used only
when KPPX > 0 on card of
type 15.
1-9 CX, KZ,
10-18 CXD, Z, | KZy is the spring force,in
dynes, for the displace-
19-27 CX, KZ,| ment Zy, in cm.
28-36 CXD, Z;
Use as many cards of type 16 as required.
Note: The KZj versus Zj values are entered in pairs in increasing
order of Z, starting with Z, (= 0), Zz, ..., to ZKPPX-
17 (8F9.0) CZq versus ZI table. Used only
when KPPC > 0 on card of
type 15.
1-9 Gy CZy
10-18 CVD, 21 Cil is the damping force,
in dynes, for the velocity
19-27 GV CZ;| Z1, in cm/sec.
28-36 CVD, 7
Use as many cards of type 17 as required.
Note: The CZ] versus ZI values are entered in pairs in increasing
order of Z,, starting with Z; (=0), Z3, -5 tO0ZEPEGS
18 1-6 (16) NPP Number of zones for which
pressures and/or displace-
ments are printed after each
cycle. These values also may
be displayed using the Calcomp
option. (See card type 24.)
19 1-6 (1216) KXP, First radial zone number.
7-12 KY 25 First axial zone number.
13-18 KXP, Second radial zone number.
19-24 KYP, * Second axial zone number.
KXP; and KYP; define each zone to be displayed; j =1, 2, ..., NPP

. indicate the type

(0 ='NPP = 6). The signs before KXPJ- and KYPJ

of information to be displayed.



Card FORTRAN

Type Columns Format Name Description
19

(Contd.) I:(XPj >0

Pressure
KYPJ. >0

KXPJ- < 03 Radial displace-
ment of lower
KYPj > 0 | left corner.

KXP. > 0) Axial displace-
J ment of lower
KYPJ- < 0| left corner.

Note: Card type 19 is used only when NPP > 0.
The following cards are used only when IOUC > 0.

20 1-6 (16) N Number of lines on the grid
that are to be repeated to pro-
vide heavier outline for film
output.

21 (1216) Specification of the lines that
are to be repeated. Used only
when N > 0 on card of type 20.

1-6 IX1, Starting mesh-point number of
thé first line (in radial
direction).

7-12 1X2, Final mesh-point number of the
first line (in radial direction).

13-18 JX1, Starting mesh-point number of
the first line (in axial
direction).

19-24 JX2, Final mesh-point number of the
first line (in axial direction).

25-30 1X1, Starting mesh-point number of
the second line (in radial
direction).

Use as many cards of type 21 as required, three lines per card.

Note: For each line J, either IX1y = IX2j or JXly = JXZJ;
I = L8 bilS N = 50).
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Card FORTRAN
Type Columns Format Name Description

22 1-6 (16,F12.0) NNM Number of pressure curves for
each displayed cycle.

7-18 PMAX Maximum pressure, in dynes/
cm?, that can be plotted.

23 (1216) Specification of the lines for
which the pressure is plotted.
Used only when NNM > 0 on
card of type 22.

For positive NX1;, program
plots the pressure for all axial

ol Nkl zones (Zy-J =2, JMAX +1) at
2 NX1 the radial zone R = NX1;. For

et . negative NX1;, program plots

13-18 NXI, the pressure for all radial

zones (R -1 = 2, IMAX +1) at
the axial zone Z = NX1;.

Use as many cards of type 23 as required, 12 numbers per card;
i=al, 2, Jos NMN (I = NN1 = 50).

24 (16,(6F12.0)) Calcomp option card.

1-6 KCAL KCAL > 0: Program draws
Calcomp plots of plug force and
the values specified on cards of
types 18 and 19 versus time.
KCAL =0: No Calcomp plot

7-18 SCT Scale for time axis (horizontal).
SCT is the number of seconds
per inch of plot. If SCT = (i@
or blank, the program sets
SCT = 00017

19-30 SCT1 Scale for plug force (vertical
axis). SCTI1 is the number of
dynes perinchof plot. If SCTI =
0.0 or blank, the program cal-
culates the optimum scale.

31-42 SCTK, Scale for first value described
on input cards of types 18 and
19 (vertical axis). If SCTK, =
0.0 or blank, the program cal-
culates the optimum scale.

43-45 SCTK,
Use as many cards as required; K = 1,2, ..., NPP (0 = NPP = §).



2. Computer Output

a. Standard Program Printout

(1) Title of problem

(2) Input data
(3) Total energy
(4) For each cycle:

(a) Full-accuracy output (see Subsection a(1) below)
(b) Limited 2-D output (see Subsection a(2) below)

(c) Time (sec); total internal energy (dyne-cm); total
kinetic energy (dyne-cm); and total energy (dyne-cm)

(d) Cycle number; time; time interval (D-TIME); maximum

distortion index (DISTORT); location of the maximum distorted zone; maxi-
mum (calculated) White stability number (WMAX) and its location
(

e) Plug force and other values requested on input cards
of types 18 and 19. (These values are also printed at the end of each run.)

(5) Reason for termination of run (if other than specified on
input card type 3).

(1) Full Accuracy Output. When IOUA > 0, a full-accuracy
printout is given for each IOUA cycle, subject to the limitation in INUMBA.
(See input card type 4 for explanation of IOUA and INUMBA.)

(a) For each cycle

i. Title of problem
ii. Cycle number
iii. Time.
(b) For each zone

3 Eleven columns, consisting of integers I and J; Ry j;
AR RI“]‘G Zy 5+ Pr,5i VPp 5 Ep 3: 1,73 and material and phase indicators.

RI.J’ ZI.J = position of lower left corner of zone I,J (in cm),

kI,J' Z1,7 = velocity of lower left corner of zone I,J (in cm/sec),

5
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Pj,y = total pressure (in dynes/cmz),
VP, = viscous pressure (in dynes/cmz),
Ep 7 = internal energy (in dyne—cm/g),
and
pr,7 = density (in g/cm?).

Note: For the initial data (cycle = 0), Mg“]— is printed instead
of VPj 7, where Mg 7 is the mass (in grams) of each zone.

(2) Limited 2-D Output. This integer output is printed for
every IOUB cycle only when IOUB > 0. It is in the form of a matrix and
includes the following properties:

(a) Initial radial position of the grid points (Rf’J)
(b) Initial axial position of the grid points (Zg,J—)
Note: Items a and b are printed only when cycle number = 0.

(c) Radial displacement of the grid points from the
. initial position.

(d) Axial displacement of the grid points from the
initial position

(e) Radial velocity of the grid points

(f) Axial velocity of the grid points

(g) Total pressure of the zones

(h) Viscous pressure of the zones

( Specific internal energy of the zones

( Density of the zones

(k) Radial strain of the zones

(1) Axial strain of the zones

(m) Angular strain of the zones

(n) Shear strain of the zones

(o) Radial stresses of the zones

(p) Axial stresses of the zones

(g) Angular stresses of the zones

(r) :

Shear stresses of the zones.
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More specifically, each page of printout is prefaced by the
problem title, property definition, time, time interval, cycle number, maxi-
mum absolute value, and scale factor used. This is followed by a matrix
(maximum 50 x 25) of the property values, where the rows indicate radial
direction and the columns indicate axial direction. Numbers are printed
on the top and left side of the matrix to indicate the position of each zone
in the grid. If the grid size exceeds 50 x 25, the printout continues on suc-
cessive pages until the grid is completed.

To obtain the printed integers, the program multiplies the
calculated property values by the indicated scale factor and then truncates.
The maximum number of integers for each property is limited to 4; thus
the maximum number printed is £+9999. If all calculated values are zeros,
the matrix output is omitted.

b. Pictorial Display (IBM-2280 Film Recorder)

Pictorial displays of the grid displacement and pressure
can be obtained for every IOUC cycle only when IOUC > 0. (See input
card type 4.)

(1) Grid Displacement. The program draws the grids
for specified cycles according to the input on cards of type 20 and 21, and
then obtains the required film output. Cycle number and time (in seconds)
are drawn at the top of each grid. Note: The lower left corner of the
picture indicates the position of R; ; and Z;,,.

(2) Pressure. If a pressure digplay in either the axial
or radial direction is specified, the program plots the pressure of each
zone (at the lower zone mesh point) in the specified direction, and then
draws the interconnecting vectors. Note: The zone number in the other
direction is constant.

To ensure uniform scaling of the plots, the expected
maximum pressure must be specified. (See input cards of type 22 and 23.)

c. Calcomp Display

This display is executed at the end of a problem, but
only when KCAL > 0. (See input card type 24.)

When executed, the program plots, as a function of time
elapsed, the total force applied on the plug by the system. It also plots,
as a function of time, the values described on input cards of types 18 and 19.

Each of the above plots has its own vertical and horizontal
axis. The latter always represents time, and its scale is specified on input
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card type 24. Scales for the vertical axis

(10 in. are allowed) may be

specified on card type 24; if not, the program finds the optimum scale

from the calculated values.

connected with vectors.

3. Program Limitations and Subroutines

a. Laimitations

Number of:

Grid zones

Different materials

Different sections

Points for Hugoniot curve(s)

Points for KZ vs Z and CZ vs Z tables
Lines repeated for pictorial display
Different pressure plots/cycle
Reactor vessels

Points for stress vs strain table for
reactor material

Cycles/run for Calcomp display
Different plots for Calcomp display

b. Subroutines

On all plots, consecutive points are infers

Not to exceed:

3000
20
20
50
50
50
50
10

50
1000

To execute the pictorial display, the program uses the sub-
routines described in:

A Film- Plotting Subroutine Package (FSP) for the IBM Film

Recorder, by Daniel F. Carson (Argonne AMD Technical Memorandum
No. 167, June 17, 1968).

To execute the Calcomp display, the program uses the sub-
routines described in:

y360 Programming Techniques for the Calcomp 780, by

Ronald F. Krupp (Argonne AMD Technical Memorandum No. 130,
January 6, 1967).



APPENDIX B

Conservation Laws for 2-D Axisymmetric Shock Wave Propagation

In this appendix, we derive the basic conservation laws of mass,
momentum, and energy, along with the equation of state.

1. Conservation of Mass

a. Incremental Form

pd¥ = p°d¥’, (B.1)
where

p,d¥ = density and incremental volume change, respectively, at
time t > 0;

and

po,d’v‘o = density and undeformed incremental volume, respectively,
at time t = 0.

b. Tensor Differential Form

The tensor equation is

80 4 pdl =
£+ pdf = 0. < (B.2)
Now,
i i &1
¥ = ss = s = e 5.3
dJ le uJ xJ ( )

where u, and x are the velocity and displacement, respectively, and conven-
tional tensor notation prevails. On using Eq. B.3, Eq. B.2 becomes

p+ pu,.!1 = 0, (B.4)
For cylindrical coordinates, the three principal coordinates are
i=r,0, 2, (B.5)
and the three velocities are

B = oW Ve W (B.6)

55



56

On using Eq. B.5, Eq. B.4 becomes

. (du, dv , dw) . _ 1
prol§EeS5esr)-o (B3

c. Physical-coordinate Differential Form

To obtain the conservation of mass in physical coordinates, the
velocity tensor is needed, which is

(3 | 2u

or oz
e dMwmviw) | 5 u 0l (B.8)
J o(r, 6, z) E

gy g

[ 0 oz |

On using Eq. B.8, Eq. B.7 becomes

2. Conservation of Momentum
a. Tensor Differential Form
The basic equation of momentum is
pal = pfi +t.ir:‘ (i,m = r,6,2), (B.10)
where
= body force
and
tm - symmetric stress tensor.
The stress tensor is defined as
‘ Orr Org Opy
IE™ 1 = | og, g o, (B.11)

zr 929 Ozy



Equation B.11 can be rewritten as the sum of a hydrostatic and
deviatoric stress tensor as follows:

Orr Org Orz

4 P 0 O o
le™|l={o P o]|+|%r % %6z, (B.12)
o v P czr c’ze azz
where
P = -%(0” +0ggt9,,) (B.13)
Ory = 0., +P, (B.14)
Ogg = Ogg+ P = -(Opy +T,,) (B.15)
azz = c'zz + P, (B.lb)
and
E.lj =0y # 3). (B.17)

On using Egqs. B.12-B.17, we can write the stress tensor as
i i E e R
R R RS |
3 1] e

where 6} is the Kronecker delta. Next, let
Nt
B = . ti. (B.19)
Then, Eq. B.18 becomes
dm = (Pol)™ + dyim, (B.20)
On using Eq. B.20, the momentum equation (Eq. B.19) becomes
pul = pff - (Pé}).ﬁ + 4im, (B.21)

b. Physical Equations of Motion

Based upon the tensor form in Eqs. B.10 and B.11, the momen-
tum equations are

57
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dorr O0rz = Orr ~ 966

s T (B.22
pa =ipu S ERe + S i = t p )
and
d0 o0 o
L Boatin 1o e rz rz zZ (B.23)
pz = pw = —Bz e o 3 r + pf

Based upon the tensor form in Egs. B.12 and B.20, the momen-
tum equations become

oP o0y ¢ 00 Orr - 966

Oy
p;:p¢=-ar+ "Ll e 5 + pf (B.24)
and
I5) do
pi:P‘”:‘%J"a%Z*a—iz* == + pf%. (B.25)
On using Eq. B.13, Eqs. B.24 and B.25 become
- : (P-Tpy) Odop, 25,,.+0,, o
R R e AR or T 5 & - (B.26)
and
AP-0,5)  do o
Sy S rz rz z
pz = pW = - e + e 2 £ ofS (B.27)
3. Conservation of Internal Energy
a.” Tensor Form
The basic equation is
pE = Mg, +h,. +pQ  (i,m = r,6,2), (B.28)

where

E,h,Q = internal energy, heat-flux vector, and energy sources,
respectively.

On using Eq. B.18, we obtains

: igl + ddim d
im = Jtjd; + % d; (B.29)



which, on using Eq. B.19, becomes

im % i d,im d
U PO -Pd; $ = [

From Eq. B.2,

which, on substitution in Eq. B.30, yields

im Lisg dimd
t dim—P-b-+ t o

Next, using Eq. B.32, Eq. B.28 becomes

. _ P , dimd
PpE = P— + "t (; P

so that Eq. B.33 becomes

i o i dim X
pE = PL+ 4 Man, + 5

b. Physical Equation Form

i h.i + pQ.

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

On using Eqs. B.2 and B.12, the components of dtim ddim are

du, 1p
or 3 n

(5 + 37
=

W=

o fo-

2\dz

Substitution of these components in Eq. B.35 gives

e

ow

or

)

(B.36)
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as= o 1 (u IB) = (aw lp)
=P Lt +=E)+0 + -=
R ”(ae+3p 60\r " 3p/) 2R3z 3 p
r r hZ
5 0 du g\ﬂ>+<8h +L+__a >+ pQ (B.37)
% or o R3S
Now,
ey (B.38)
v
where v is the specific volume.
Differentiating Eq. B.38 with respect to time gives
B A O B.3
.ﬁ = £V, ( 9)
which, on substitution in Eq. B.37, yields
= A S Bu s Yt aW (au Bw)
B P W e, O =i O = & Bhlgl et
["ar o Dt T
1/~ — - . ohT ht oh?
- 2\ Orr + Ogg + 0zz) v + V< +—+-—)+ Q. (B.40)
3( 66 ) or o e
From Egs. B.13-B.16,
1,- — =
g(orr t Ogg t Uzz) = (B.41)
so that Eq. B.40 reduces to
. : SSEon S i du , ow
E =-Pv+v|o,.,.—+0,—+0,,—+ O _t —
|:” or 66 r 2% 3z "(az Br)
dh"™  h' | 3h®
¥ V( A —) - (B.42)
or = dz

At this point, it is convenient to introduce the strain rates
defined as

. - . ’
€rr ~ _l'l‘3 €zz = a_w; (B.43)



e

5 = —; = — 4+ —. .44
€00 =i & ” + e (B.44)

Thus, Eq. B.42 becomes

E=-Pv + v(Grrérr + G000 + Tpzéaz + Grzérz) + v<¥. R = 7 _>+ Q.

4. Equation of State

Since no known equation of state prevails for all materials, the form
assumed for each material is

p = p(E,v) = p(E,p). (B.46)
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APPENDIX C

Finite-difference Equations of the Jacobians

E A
2 5 |
= \
e N
/ AN
6 0 N8

TAYLOR'S EXPANSION
MID - POINT METHOD

GREEN'S TRANSFORMATION

Finite-difference equations will be derived by all three methods.
The correspondence between the letters and numbers in the illustration

with Lagrangian coordinates is

1=1+1/2,7+1/2
2=1+1/2,7-1/2
3=1-1/2,3-1/2
4 =TT 12
5=1+1/2,7
6=117T-1/2
f=: s VLA
8=1,7T+1/2

TQORMEBEDQW >

=17
=T A
= Ld=l
=1-1,7
e e
Soilar L d =
9 1 B |
L B )
BN IE R )

O (R

+
+

Accelerations, velocities, and displacements are centered at the
mesh point (0, A, B, C, D, E, F, G, H) and subscripted (I, J). Specific
values of volume, pressure, area, viscosity, stresses, density, mass, and
internal energy are centered at the middle of the zones (1, 2, 3, 4) and
subscripted (I1+1/2, J+ 1/2). Time is denoted by the superscript n.

To obtain the finite-difference form of the conservation laws the
finite-difference form of the Jacobian for an arbitrary function F must be

determined first.

A(F, r
o(1, J)

J(F, z)

o(1, J)

- G- (
- (EME).- (

OF

a7

OF
oJ

or
)0(5)0 = —Ao aZ

dz oF
>0<§>0 RT3

"

(Gl

(c.2)




To find the values of the Jacobians in Egs. C.1 and C.2 at the
point 0, the partial derivatives at 0 must be evaluated for all three methods.

1. Taylor's Expansion

To evaluate the partial derivatives in Eqs. C.1 and C.2 by Taylor's
method, centered differences will be used. Accordingly,

(%—L;)o = H(F1+Fy) - (F3+Fy]; (C.3)
(§5). = s+ 70 - (rar E: (c.4)
(%), = 4+ 72 - (x4 20 (c.5)
(%)o = H(rr 414 - (rz413)]; (C.6)
(%)o = binitml- (s udb (c.7)
(g-;)o = H(z1+24) - (22%23)] 3 (C.8)

On using Eqs. C.3-C.8, Egs. C.1 and C.2 become

Sa((bl".Jr)) - A[(F)- F3+ Fy- Fy)(r) - 12+ 14~ 13)
- (Fy- Fa+ Fy- F3)(ry - r3+ - 14)] (C.9)
and
%-((1;—"327) 8 (F1-F3+ Fp- Fu)(2) - 22+ 24~ 23)

- (F1-F+ Fy- F3)(z,- 23+ 2, - 24)]. (c.10)
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Multiplying out Eqs. C.9 and C.10 gives

aa((?,';)') , = H(Fe- Fori - 13) - (Fy- F3)(rz - r4)] (C-11)
and
ST~ 4(F,- Pl - 2) - (F1- Pz 20 (c.12)

From Egs. C.1 and C.2,

g_fo < z_jx‘)[(FZ'F‘i)(zl'zs) - (Fy- F3)(z2- 24)] (C.13)
and
g_f 0 o 'ZLAO[(FZ’ Fg)(ry-1r3) - (Fy- F3)(rz2- r4)]. (C.14)

Using Eq. C.12 gives

_ 9(r, 2)
B~ d(1, J)

s = %[(rz' ra)(z1 - 23) - (r1- r3)(z;- z4)]. (C.15)

Since the displacements are defined only at the mesh points, the values of
the displacements in Eqs. C.5-C.15 must be regarded as the centroids of
the mesh zones. Hence, to express these equations in terms of mesh
points, we use the following relationships:

ry = #(ro+rD+THFTA);
r, = 3(ro+ra+rE+rB); (C.16)
r3 = 2(ro+rB+rF+rc);
r; = 4(ro +rctrgtrpl
and
21 = (Z0+zptagtza);
zz = §(zo+tzpa+2zE+2zR);
2y = %(zo+zB+ zZpt zC); (C.17)
Zyi= %(zo+zc+ zGtzp);



which yield the final equations

o(F, 1
g(l—;)l . SVE(F - Fu)(rp - rc+rp-rgtryg-rp)
- (Fy-Fy)(rA-rCc+rB-rD+rE- rG)]
and
o(F, z 1
ST |, = g[(F2- F)(zpo - zg+2zp- 2B+ 2zH - 2F)

- (Fy- F3)(zp-zgtzp-2zptzE-2g)]

2. Midpoint Method

The results for this case can be obtained from Section 1 of

Appendix B by using the identities

1=-5

2+ 6

3-7

4 -8

in Egs. C.11-C.15. Thus,

LB s(ry- Fallrs- rr) - (Fs- Fa)(me- ro))
) o

aa((}i‘,Jz)) = L[(F¢- Feo)(zs-27) - (Fs- Fq)(z6- 2g)];
»J) o

Ay = %[(re' rg)(zs- 27) - (rs-rq)(z6- Za)];

| - Zhl(Fe- Fallas- 20) - (Fs- Folae- 2o))

3r| 1

3zl = 'm[(Fb' Fg)(rs- rq) - (Fs- Fq)(re- rg)l-

(c.18)

(C.19)

(c.20)

(c.21)

(G122}

(c.23)

(C.24)

(C.25)
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Since the value of F must be known at the center of the zones and the
coordinates at the mesh points, the definitions

and

are substituted into Egs.

and

Fs = 3(F1+F))
1
Fg = 3(F2+ F3)
Fq = %(F +Fy)
Fg = 3(F1+Fy)
Tei= %(ro+ O = %(ro+ rg)
To = %(ro+ rc); rg = -;—(ro+ rp)
zs = 3(20t2A); 26 = 3(20+2B)
Zq = —;—(z0+ zg); 2zg = %(zo+ zp)

—aai(ll?_,,;}o = %[(FZ_FO(I‘A_I'C'*'TD'I‘B)
- (Fl B F;)(l‘A- rC+ rB i rD)]:

o(F,

é(ll:‘,—;)) 5 = %[(FZ_F4)(2A-ZC+ZD'ZB)

- (Fy-Fs)(zp-2ctzp-2zp)l

Ag = %[(I‘B' rp)(zp-2c) - (ra-rc)(zp- 2p)l,

OF 1

5rlo = 5, (F2~ Fla- 2+ 2p - 2p)

- (F1-F3)(zp - zgtzpg-zp)l,

OF 1
3zl = " 8AlF2-Fallza-rc+rp-B)

- (F1-F3)(rp-rctrp-rp)l

C.21-C.25 to obtain the final equations

(C.26)

(Caza)

(C.28)

(C.29)

(C.30)

(c.31)

(c.32)

(C.33)



3. Green's Transformation

Green's Theorem in two dimensions is

anids:f ¥ i dA
C A

where
nj = outward normal vector to the surface dA,
C = circuit enclosing the area A,
and
, = covariant differentiation.
In component form, two equations are obtained:
(&) a-f rar-[ Fon
avg c A
and

),

32 /avg

n
1
(@]
Hj
o
N
1]
.
Q/IQJ
N |
o
'

which, on substitution in Eqs. C.29 and C.30, yield

=f F dr
L C

J(F, z
o(L, J)

and

= F dz.
20
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(C.34)

(C.35)

(C.36)

(c.37)

(C.38)

For example, if we choose the circuit ABCD in the illustration (p. 62) and
consider the pressure on side AB to be given by its average, etc., and
recognize that path of the circuit is counterclockwise, Eqs. C.37and C.38 give
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and

and

aa((];,,Jz)) i -[Fi(zp-2zp) + Falzp - zp) + Falzg - zg)
et F4(ZD- zc)]
AF, )l e

= | B - IR -r + Fs(rc-1rB)
(L, ) |o [Fi(ra-rD) oAt -rA) s(rc-rB
= F4(I‘D- rc)]
From Egs. C.39 and .40

1
5 = —'—ZA [FI(ZA_ ZD) o FZ(ZB ” ZA) i F3(Zc- ZB)
0

it F4(ZD- Zc)],

il
3 = —ZE.'[FI(I‘A- rD) o FZ(rB— I‘A) + F3(l‘c- I‘B)

oz

+ Fy(rp-rc)l

A = 2A,,

where A, is given by Eq. C.23.

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)



1.

2.

3.

5.
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